

Hijing calculations of dA and other things

Richard Seto
University of CA, Riverside
Hard Scattering PWG
Sept 13, 2001

Hijing study of dA

- Look at dA
 - Can we separate jet quenching from other effects?
 - Will we get enough statistics?
- Hijing is used as an example before our data is taken
 - I would like our final result to be INDEPENDENT of the model.
 - dA will give us this handle
 - Statistics assuming Tony's numbers appear to been enough (as shown by many others)
- I place no credence in the model in fact it is probably not correct. Its just to see the general effect

What are the effects?

- Effects hard scattering is the probe
 - Npart /Nbin scaling
 - 2) "Cronin effect", initial state quark scattering
 - 1) i.e. p_T broadening/Enhances higher p_T
 - 2) reduced role at high energy

- 1) Gluon shadowing
 - 1) is not measured/large role at RHIC
- 4) Jet quenching (!)
- Handles
 - pp gives us the initial hard scattering
 - dA should give exhibit 1,2,3
 - Will allow us to MEASURE shadowing and cronin
 - AA either
 - Exibits 1,2,3 (should look like ~ dA)
 - Exibits all 4 effects (should look different than dA)

Parameters used

- 占 Hijing
 - pp,dA,AA, SiSi various energies (mostly 200 GeV), centralities
 - Cronin (default values)
 - Shadowing (default values)
- Jet quenching
 - Parameters
 - dE/dx ~ .25 GeV/fm for quarks (2x for gluons)
 - Mean free path = 1 fm (default)
 - Hijing model has
 - Constant dE/dx
 - Uniform fireball
 - A More realistic model
 - dE/dx ~ L (interference)
 - More dense in center

Luminosities, Nevents, Nbin

- Used Luminosities from Tony's RBUP writeup
- Nbin and Npart taken from Klaus Reyger's glauber_mc package (dave- I couln't compile glauber anymore)
 - Hijing wants impact parameter, bmin and bmax
 - Just took simple minded fraction of cross section

Nbinaries

	lum ub-1	cs (mb)	nminbias	n10% cent	1fm	10%	minbias
AuAu	242	72000	1.7e9	1.7e8	1140	912	230
dAu	15573	12200	3.9e10	3.9e9	17	16	7.6
pp	3.8e6	50	1.14e11	-	1		
sisi	8260	23000	1.9e11	1.9e10	67	58	17.5

- Some problems when running hijing under linux and g77
 - Local subroutine variables not saved between calls. SAVE statements need to be added
 - Some variables are not initialized unless a loop is entered. For g77 loops are not run once.
 These variables must be initialized.

- Method
- Threw ~10K to 10M events.
- Binned events to to get reasonable MC statistics.
 - Black dotted error bars reflect MC statistics.
- Scaled up to assumed integrated **luminosity**
 - Colored error bars(barely visible) in smaller bins reflect statistics from assumed data
- For central events, I threw b<1fm to avoid issues of nbin etc
 - To check I plot AA(b<1fm)/AA(10% central) normalizedto nbin. R
- Check AA/pp, dA/pp,AA/dA with no shadow, no cronin, no quech
 - Shape comes from $[c_1(p_T)*Npart+c_2(p_T)*Nbin]/Nbin$
 - Should go 1 at high pt
 - Needed a 10% scaling down of Nbin From difference in Hijing and glauber mc?

Where are we, vs prediction?

Pi0 data

 Compare 130 GeV data vs predictions at 200 (data from table 10 of final analysis note- errors=s₊, band drawn by paw)

Notes

- Data far away from 1
- Consistent with the jet quench hypothesis
- But the non-quench hypothesis is scary. E.g. x0.7 (more shadowing) makes non-quench data also consistent

Shadowing, cronin+Jet quenching

First assume NO jet quench

- dA/pp and AA/pp have simillar shapes
 - Below 1 at high pt because of shadowing
 - Rise different because dA and pp have different number of participants
 - Cronin effect and shadowing oppose each other

- dA/pp and AA/pp look very different!
 - Only AA exhibits the quench
- Bottom line
 - If dA and AA look alike no jet quenching
 - If dA and AA look different –
 jet quenching (I.e. look at
 AA/dA)
 - Looks like we will have enough statistics in pp,dA,AA if we get what is in Tony's write up.

Michala Scio

Conclusions

- Statistics we are requesting for dA run is adequate
- If
 - our effect is shadowing
 - dA/pp will look simillar to AA/pp
 - our effect is jet quenching
 - dA/pp will look very different